Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance.
نویسندگان
چکیده
In principle, evolutionary outcomes could be largely predicted if all of the relevant physicochemical variants of a particular protein function under selection were known and integrated into an appropriate physiological model. We have tested this principle by generating a family of variants of the tetracycline resistance protein TetX2 and identified the physicochemical properties most correlated with organismal fitness. Surprisingly, small changes in the K(m(MCN)), less than twofold, were sufficient to produce highly successful adaptive mutants over clinically relevant drug concentrations. We then built a quantitative model directly relating the in vitro physicochemical properties of the mutant enzymes to the growth rates of bacteria carrying a single chromosomal copy of the tet(X2) variants over a wide range of minocycline (MCN) concentrations. Importantly, this model allows the prediction of enzymatic properties directly from cellular growth rates as well as the physicochemical-fitness landscape of TetX2. Using experimental evolution and deep sequencing to monitor the allelic frequencies of the seven most biochemically efficient TetX2 mutants in 10 independently evolving populations, we showed that the model correctly predicted the success of the two most beneficial variants tet(X2)(T280A) and tet(X2)(N371I). The structure of the most efficient variant, TetX2(T280A), in complex with MCN at 2.7 Å resolution suggests an indirect effect on enzyme kinetics. Taken together, these findings support an important role for readily accessible small steps in protein evolution that can, in turn, greatly increase the fitness of an organism during natural selection.
منابع مشابه
Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme.
Populations with large mutation supplies adapt via the "greedy" substitution of the fittest genotype available, leading to fast and repeatable short-term responses. At longer time scales, smaller mutation supplies may in theory lead to larger improvements when distant high-fitness genotypes more readily evolve from lower-fitness intermediates. Here we test for long-term adaptive benefits from s...
متن کاملPatterns of Epistasis between Beneficial Mutations in an Antibiotic Resistance Gene
Understanding epistasis is central to biology. For instance, epistatic interactions determine the topography of the fitness landscape and affect the dynamics and determinism of adaptation. However, few empirical data are available, and comparing results is complicated by confounding variation in the system and the type of mutations used. Here, we take a systematic approach by quantifying epista...
متن کاملNpgRJ_ng_1751 1..5
The extent to which a population diverges from its ancestor through adaptive evolution depends on variation supplied by novel beneficial mutations. Extending earlier work1,2, recent theory makes two predictions that seem to be robust to biological details: the distribution of fitness effects among beneficial mutations before selection should be (i) exponential and (ii) invariant, meaning it is ...
متن کاملAdaptive protein evolution grants organismal fitness by improving catalysis and flexibility.
Protein evolution is crucial for organismal adaptation and fitness. This process takes place by shaping a given 3-dimensional fold for its particular biochemical function within the metabolic requirements and constraints of the environment. The complex interplay between sequence, structure, functionality, and stability that gives rise to a particular phenotype has limited the identification of ...
متن کاملInitial Mutations Direct Alternative Pathways of Protein Evolution
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 52 شماره
صفحات -
تاریخ انتشار 2012